Statistical Models for Empirical Search-Based Performance Tuning

نویسندگان

  • Richard W. Vuduc
  • James Demmel
  • Jeff A. Bilmes
چکیده

Achieving peak performance from the computational kernels that dominate application performance often requires extensive machine-dependent tuning by hand. Automatic tuning systems have emerged in response, and they typically operate by (1) generating a large number of possible, reasonable implementations of a kernel, and (2) selecting the fastest implementation by a combination of heuristic modeling, heuristic pruning, and empirical search (i.e., actually running the code). This paper presents quantitative data that motivates the development of such a search-based system, using dense matrix multiply as a case study. The statistical distributions of performance within spaces of reasonable implementations, when observed on a variety of hardware platforms, lead us to pose and address two general problems which arise during the search process. First, we develop a heuristic for stopping an exhaustive compile-time search early if a near-optimal implementation is found. Second, we show how to construct run-time decision rules, based on run-time inputs, for selecting from among a subset of the best implementations when the space of inputs can be described by continuously varying features. We address both problems by using statistical modeling techniques that exploit the large amount of performance data collected during the search. We demonstrate these methods on actual performance data collected by the PHiPAC tuning system for dense matrix multiply. We close with a survey of recent projects that use or otherwise advocate an empirical search-based approach to code generation and algorithm selection, whether at the level of computational kernels, compiler and run-time systems, or problem-solving environments. Collectively, these efforts suggest a number of possible software architectures for constructing platform-adapted libraries and applications. Computer Science Division, Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA 94720 USA, [email protected] Computer Science Division, Department of Electrical Engineering and Computer Sciences, and Department of Mathematics, University of California at Berkeley, Berkeley, CA 94720 USA, [email protected] Department of Electrical Engineering, University of Washington, Seattle, WA USA, [email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Monte Carlo-Based Search Strategy for Dimensionality Reduction in Performance Tuning Parameters

Redundant and irrelevant features in high dimensional data increase the complexity in underlying mathematical models. It is necessary to conduct pre-processing steps that search for the most relevant features in order to reduce the dimensionality of the data. This study made use of a meta-heuristic search approach which uses lightweight random simulations to balance between the exploitation of ...

متن کامل

An ANOVA Based Analytical Dynamic Matrix Controller Tuning Procedure for FOPDT Models

Dynamic Matrix Control (DMC) is a widely used model predictive controller (MPC) in industrial plants. The successful implementation of DMC in practical applications requires a proper tuning of the controller. The available tuning procedures are mainly based on experience and empirical results. This paper develops an analytical tool for DMC tuning. It is based on the application of Analysis of V...

متن کامل

Statistical Models for Automatic Performance Tuning

Achieving peak performance from library subroutines usually requires extensive, machine-dependent tuning by hand. Automatic tuning systems have emerged in response, and they typically operate by (1) generating a large number of possible implementations of a subroutine, and (2) selecting the fastest implementation by an exhaustive, empirical search. This paper presents quantitative data that mot...

متن کامل

Statistical Modeling of Feedback Data in an Automatic Tuning System

Achieving peak performance from library subroutines usually requires extensive, machine-dependent tuning by hand. Automatic tuning systems have been developed in response which typically operate, at compiletime, by (1) generating a large number of possible implementations of a subroutine, and (2) selecting a fast implementation by an exhaustive, empirical search. In this paper, we show how stat...

متن کامل

Estimation of Global Solar Irradiance Using a Novel combination of Ant Colony Optimization and Empirical Models

In this paper, a novel approach for the estimation of global solar irradiance is proposed based on a combination of empirical correlation and ant colony optimization. Empirical correlation has been used to estimate monthly average of daily global solar irradiance on a horizontal surface. The Ant Colony Optimization (ACO) algorithm has been applied as a swarm-intelligence technique to tune the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IJHPCA

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2004